各类知识收集,PHP技术分享与解决方案各类知识收集,PHP技术分享与解决方案各类知识收集,PHP技术分享与解决方案

Str Tom,为分享PHP技术和解决方案,贡献一份自己的力量!
收藏本站(不迷路),每天更新好文章!
当前位置:首页 > CMS教程 > PHP

PHP实现一致性哈希算法的详细介绍(代码示例)

管理员 2023-09-05
PHP
123

PHP实现一致性哈希算法的详细介绍(代码示例)

内容导读

收集整理的这篇技术教程文章主要介绍了PHP实现一致性哈希算法的详细介绍(代码示例),小编现在分享给大家,供广大互联网技能从业者学习和参考。文章包含5203字,纯文字阅读大概需要8分钟

内容图文

本篇文章给大家带来的内容是关于PHP实现一致性哈希算法的详细介绍(代码示例),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。

一、案例分析
(1)问题概述

假设我们的图片数据均匀的分配在三台服务(分别标注为服务器A,服务器B、服务器C)上面,现在我们要从里面取图片,服务端在拿到这个请求后,怎么会指定,这张图片是存在服务器A、服务器B,还是服务器C上面呢?若是去遍历,两三台还好说,但那也太out了,当服务器的数量达到成百上千台的时候,还敢说去遍历吗?

(2)解决方案

a、通过存储映射关系

首先我们可能会想到,可以搞一个中间层来记录图片存储在哪个服务器上面,如下:

logo1.png =====》 服务A

ogo2.png =====》 服务B

logo3.png =====》 服务C

这样,每当请求过来的时候,我们先去请求图片与服务器的映射关系,找到图片存储的服务器,在向指定的服务器发出请求。从实现的角度来说,这是可行的,但是在存储图片的时候,我们也必须存储图片与服务器的映射关系,这明显加大了工作量,其维护也是一个问题,一旦存储的图片和服务器映射关系出现了问题,整个系统就挂了。

b、hash算法

既然我们要排除存储映射关系,这个时候,人们想到了hash算法。如

图片在存储的时候,依据图片名称(logo1.png),通过hash算法求出散列值val,通过对val进行取模,得出的值,就可以判断图片应该存储在哪个服务器上面。如下:

key = hash(imgName) % n

其中:

imgName为图片名称,

n为服务器的个数,

key代表图片应该存储在第几个服务器上面。

当请求过来的时候,比如请求logo1.png这个图片,服务端依据上述公式计算出的key,就可以判断该logo1.png存储在哪个服务器上面。PHP实现如下:

$hostsMap = ['img1.findme.wang', 'img2.findme.wang', 'img3.findme.wang']; function getImgSrc($imgName) {    global $hostsMap;    $key = crc32($imgName) % count($hostsMap);    return 'http://' . $hostsMap[abs($key)] . '/' . $imgName;}//测试var_dump(getImgSrc("logo1.png"));var_dump(getImgSrc("logo2.png"));var_dump(getImgSrc("logo3.png"));

输出:

此时,我们由存储映射关系变为计算服务器的序号,确实极大的简化了工作量。

但是一旦新增机器,就非常麻烦了,因为n变了,几乎所有的序列号key也变了,于是需要大量的数据迁移工作。

C、一致性hash算法

一致性hash算法,是一种特殊的hash算法,旨在解决当node数(如存储图片的服务器数量)变化时候,尽量少数据的迁移。

其基本思想:

1、首先把0~2的32次方个点,均匀的分布到一个圆环上面,如下:

2、然后将所有的节点node(存储图片的服务器)通过hash计算后,对232取余,然后也映射到hash环上面,如下:

3、当请求过来的时候,比如请求logo1.png这个图片,通过hash计算后,对232取余,然后也映射到hash环上面,如下:

4、然后顺时针转动,第一个到达的节点node,就认为是存储logo1.png图片的服务器。

从上面可以得知,其实一致性hash的亮点,首先在于对节点node(存储图片的服务器)和对象(图片)都进行了hash计算和映射,其次是闭环的设计。

优点:当新增机器的时候,仅仅标志出来的区域受到影响,如下图:

缺点:当节点node比较少的时候,往往缺少平衡性,因为经过hash计算后,映射到hash环上面的节点node,并不是均匀分布的,导致了有的机器负载很高,有的机器很空闲。

PHP实现如下:

$hostsMap = ['img1.findme.wang', 'img2.findme.wang', 'img3.findme.wang'];$hashRing = []; function getImgSrc($imgName){    global $hostsMap;    global $hashRing;    //将节点映射到hash环上面    if (empty($hashRing)) {        foreach($hostsMap as $h) {            $hostKey = fmod(crc32($h) , pow(2,32));            $hostKey = abs($hostKey);            $hashRing[$hostKey] = $h;        }        //从小到大排序,便于查找        ksort($hashRing);    }     //计算图片hash    $imgKey = fmod(crc32($imgName) , pow(2,32));    $imgKey = abs($imgKey);    foreach($hashRing as $hostKey => $h) {        if ($imgKey < $hostKey) {            return 'http://' . $h . '/' . $imgName;        }    }    return 'http://' . current($hashRing) . '/' . $imgName;} var_dump(getImgSrc("logo1.png"));var_dump(getImgSrc("logo2.png"));var_dump(getImgSrc("logo3.png"));

输出结果如下:

至于为什么使用fmod函数不适用求余运算符%,主要是因为pow(2,32)在32位操作系统上面,超高了PHP_INT_MAX,具体可以参考上一篇文章“PHP中对大数求余报错Uncaught pisionByZeroError: Modulo by zero”。

d、通过虚拟节点优化一致性hash算法

为了提高一致性hash算法的平衡性,我们首先能够想到的是,增加节点数,但是机器毕竟是需要经费啊,不是说增就能随意增,那就增加虚拟节点,这样就没毛病了。思路如下:

1、假设host1、host2、host3,都分别有3个虚拟节点,如host1的虚拟节点为host1_1、host1_2、host1_3

2、然后将所有的虚拟节点node(存储图片的服务器)通过hash计算后,对232取余,然后也映射到hash环上面,如下:

然后,接下来步骤同一致性hash算法一致,只是最后需要将虚拟节点,转为真实的节点。

PHP实现如下:

$hostsMap = ['img1.findme.wang', 'img2.findme.wang', 'img3.findme.wang'];$hashRing = []; function getImgSrc($imgName){    global $hostsMap;    global $hashRing;    $virtualNodeLen = 3; //每个节点的虚拟节点个数     //将节点映射到hash环上面    if (empty($hashRing)) {        foreach($hostsMap as $h) {            $i = 0;            while($i < $virtualNodeLen){                $hostKey = fmod(crc32($h.'_'.$i) , pow(2,32));                $hostKey = abs($hostKey);                $hashRing[$hostKey] = $h;                $i++;            }        }        //从小到大排序,便于查找        ksort($hashRing);    }     //计算图片hash    $imgKey = fmod(crc32($imgName) , pow(2,32));    $imgKey = abs($imgKey);    foreach($hashRing as $hostKey => $h) {        if ($imgKey < $hostKey) {            return 'http://' . $h . '/' . $imgName;        }    }    return 'http://' . current($hashRing) . '/' . $imgName;} var_dump(getImgSrc("login1.png"));var_dump(getImgSrc("login2.png"));var_dump(getImgSrc("login3.png"));

执行结果如下:

二、备注
1、取模与取余的区别?

取余,遵循尽可能让商向0靠近的原则

取模,遵循尽可能让商向负无穷靠近的原则

1、什么是CRC算法?

CRC(Cyclical Redundancy Check)即循环冗余码校验,主要用于数据校验,常用的有CRC16、CRC32,其中16、32代表多项式最高次幂。

以上就是PHP实现一致性哈希算法的详细介绍(代码示例)的详细内容,更多请关注Gxl网其它相关文章!

内容总结

以上是为您收集整理的PHP实现一致性哈希算法的详细介绍(代码示例)全部内容,希望文章能够帮你解决PHP实现一致性哈希算法的详细介绍(代码示例)所遇到的程序开发问题。 如果觉得技术教程内容还不错,欢迎将网站推荐给程序员好友。

内容备注

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

扫码关注

qrcode

QQ交谈

回顶部